Aumentare lo spazio disponibile senza dover ampliare un edificio è possibile, pratico e vantaggioso. Il nostro servizio di costruzione soppalchi in acciaio su misura offre una soluzione solida, sicura e completamente personalizzabile per sfruttare al massimo il volume in altezza di locali industriali, commerciali e residenziali.
I soppalchi in acciaio sono ideali per creare nuovi ambienti di lavoro, depositi, zone ufficio o aree tecniche sopraelevate, con strutture modulari ad alta resistenza e adattabili a ogni tipo di esigenza. Progettiamo, realizziamo e montiamo soppalchi certificati, pronti all'uso e pensati per durare nel tempo.
Cosa realizziamo:
Soppalchi industriali per magazzini, officine, capannoni
Soppalchi portanti per carichi elevati, scaffalature o impianti
Soppalchi per uffici interni o zone operative rialzate
Strutture con scale, parapetti, cancelli di sicurezza e rampe
Pavimentazioni in lamiera grecata, grigliato o legno tecnico
Soppalchi per ambienti commerciali e residenziali
Caratteristiche del servizio
Progettazione personalizzata secondo le dimensioni e il carico richiesto
Calcoli strutturali e disegni tecnici eseguiti da personale qualificato
Strutture in acciaio zincato o verniciato, resistenti alla corrosione
Sistemi di ancoraggio, rinforzo e sicurezza certificati
Montaggio rapido, preciso e senza interventi invasivi
Predisposizione per impianti elettrici, luci, divisori o scaffalature
Ogni soppalco viene studiato per integrare perfettamente funzionalità, sicurezza e ottimizzazione degli spazi, con un occhio di riguardo alla praticità quotidiana e alle normative vigenti.
A chi è rivolto questo servizio
Aziende che vogliono ottimizzare il magazzino o aumentare lo spazio operativo
Officine e laboratori che necessitano di superfici calpestabili aggiuntive
Negozi e showroom che desiderano aree espositive sopraelevate
Privati con locali alti da valorizzare (garage, loft, depositi)
Studi tecnici e imprese che cercano un partner per realizzazioni su misura
Perché scegliere un soppalco in acciaio?
Aumento dello spazio utilizzabile senza interventi strutturali invasivi
Soluzione robusta, modulare e facilmente smontabile o ampliabile
Adatta a ogni tipo di ambiente: industriale, commerciale o civile
Massima resistenza ai carichi statici e dinamici, anche pesanti
Installazione rapida, con tempi certi e costi controllati
📌 Ogni metro in altezza può diventare valore aggiunto. Contattaci per progettare insieme un soppalco in acciaio funzionale, sicuro e su misura per i tuoi spazi.
Alcuni Articoli Dai Nostri Giornali:
Opere Metalliche
Benvenuto nella rubrica dedicata ai soppalchi in acciaio, un mondo di soluzioni funzionali e robuste per ottimizzare gli spazi. Qui troverai approfondimenti tecnici, esempi pratici e consigli per progettare e realizzare soppalchi sicuri, resistenti e su misura. Scorri gli articoli e lasciati guidare dalla nostra esperienza nel campo della carpenteria metallica.
Le tecnologie di calcolo aprono nuove frontiere per la progettazione di edifici fluttuanti, consentendo una visione futuristica e sostenibile della costruzione civile. Sfruttando algoritmi avanzati, è possibile rivoluzionare il settore delle costruzioni con soluzioni innovative e all’avanguardia.
Esplorando i meravigliosi effetti della luce naturale nell’ambiente domestico e professionale, “Luminosità e Spazio: Rinnovare con la Luce Naturale” si propone di trasformare gli spazi con eleganza e luminositÃ.
L’architettura industriale, da semplice fabbrica a spazio vitale. Un viaggio affascinante attraverso la trasformazione di edifici industriali in luoghi di vita e creativitÃ. La reinterpretazione del passato per creare il futuro.
L’impiego del calcolo strutturale nella riqualificazione urbana sostenibile sta rivoluzionando il modo in cui progettiamo i nostri spazi urbani. Grazie a questa tecnologia, possiamo creare edifici più sicuri, efficienti e rispettosi dell’ambiente.
Le fondamenta di una casa sono il pilastro principale su cui si regge l’intera struttura. Fondamenta sicure garantiscono la stabilità dell’edificio, la sicurezza degli abitanti e la durabilità dell’immobile nel tempo. Tuttavia, con il passare degli anni o a causa di problemi di costruzione, le fondamenta possono subire danni o deteriorarsi, mettendo a rischio l’integrità…
Immergiti nelle Leggende dei Templi Nascosti e scopri i misteri che avvolgono le antiche costruzioni sacre. Da Stonehenge alle Piramidi, un viaggio affascinante attraverso la storia e i segreti delle civiltà perdute.
Scopriamo insieme il magico mondo dei rifugi urbani, veri e propri spazi di respiro nel caos cittadino. Un connubio perfetto tra natura e arte che trasforma le città in veri gioielli urbani.
Le tecniche di calcolo per la progettazione di strutture sostenibili in zone aride rappresentano un passo fondamentale verso la creazione di soluzioni architettoniche innovative e rispettose dell’ambiente. Scopriamo insieme come queste metodologie possano contribuire all’equilibrio ecologico delle aree desertiche.
Il mese di luglio 2024 si preannuncia cruciale per il settore delle costruzioni edili in Italia. Con un mercato in continua evoluzione e le recenti normative introdotte, è essenziale prevedere come queste influenzeranno il settore. Questo articolo fornisce una panoramica delle tendenze attese, delle sfide e delle opportunità per il mese prossimo. 1. Tendenze di…
Le ristrutturazioni rigenerative sono un approccio innovativo che mira a ripristinare l’equilibrio negli ecosistemi urbani, promuovendo la sostenibilità e la biodiversitÃ. Scopriamo insieme come queste pratiche possono trasformare le nostre cittÃ.
Gare di Appalto per le Costruzioni Metalliche Aggiudicate dal 9 al 16 Luglio 2024
Nella settimana dal 9 al 16 luglio 2024, in Italia sono state aggiudicate diverse gare di appalto nel settore delle costruzioni metalliche.
Queste aggiudicazioni rappresentano un’importante evoluzione per il settore delle infrastrutture e delle costruzioni, contribuendo allo sviluppo economico e alla modernizzazione delle strutture esistenti. Di seguito, una panoramica dei principali progetti aggiudicati in questo periodo.
Gare di Appalto per le Costruzioni Metalliche
Principali Gare di Appalto Aggiudicate
Progetto
Località
Descrizione
Impresa Aggiudicataria
Valore (in milioni di euro)
Costruzione di un Nuovo Ponte Metallico
Torino
Realizzazione di un ponte interamente in acciaio per il traffico veicolare e pedonale
PonteMetal S.p.A.
50
Ristrutturazione di Strutture Industriali
Milano
Ristrutturazione e ampliamento di un complesso industriale metallico
IndustriaMilan S.r.l.
35
Ampliamento Terminal Aeroportuale
Roma
Ampliamento del terminal con strutture metalliche moderne
AeroMetal Roma S.p.A.
45
Costruzione di una Torre Uffici
Bologna
Costruzione di un edificio per uffici con struttura in acciaio
UfficiSteel Bologna S.r.l.
60
Realizzazione di un Parco Fotovoltaico
Napoli
Costruzione di strutture metalliche per un nuovo parco fotovoltaico
GreenMetal Napoli S.p.A.
40
Nuovo Stadio
Firenze
Realizzazione di uno stadio con copertura in acciaio
StadioFirenze S.r.l.
100
Dettagli dei Progetti
Costruzione di un Nuovo Ponte Metallico a Torino
Uno dei progetti più significativi è la costruzione di un nuovo ponte metallico a Torino. Aggiudicato a PonteMetal S.p.A. per un valore di 50 milioni di euro, questo ponte migliorerà la viabilità cittadina, facilitando il traffico veicolare e pedonale.
Ristrutturazione di Strutture Industriali a Milano
IndustriaMilan S.r.l. si è aggiudicata il progetto di ristrutturazione e ampliamento di un complesso industriale metallico a Milano per 35 milioni di euro. Questo progetto prevede l’ammodernamento delle strutture esistenti per renderle più efficienti e sicure.
Ampliamento del Terminal Aeroportuale di Roma
AeroMetal Roma S.p.A. si occuperà dell’ampliamento del terminal aeroportuale di Roma con moderne strutture metalliche, per un valore di 45 milioni di euro. Questo progetto mira a migliorare l’efficienza e la capacità dell’aeroporto.
Costruzione di una Torre Uffici a Bologna
UfficiSteel Bologna S.r.l. si è aggiudicata la costruzione di una nuova torre uffici a Bologna, del valore di 60 milioni di euro. La struttura sarà interamente in acciaio, con un design innovativo e funzionale.
Conclusioni
Le gare di appalto aggiudicate tra il 9 e il 16 luglio 2024 evidenziano l’importanza delle costruzioni metalliche nello sviluppo infrastrutturale italiano. Questi progetti non solo migliorano la qualità delle infrastrutture esistenti, ma promuovono anche l’innovazione e la sostenibilità nel settore delle costruzioni.
United Living rafforza la propria presenza nel settore idrico con l’acquisizione di Peter Duffy Ltd: tutti i dettagli!
Il Gruppo United Living, azienda leader nel settore delle costruzioni e delle infrastrutture, ha recentemente annunciato l’acquisizione di Peter Duffy Ltd, un’importante azienda specializzata nel settore idrico. Questa mossa strategica ha permesso a United Living di rafforzare ulteriormente la propria presenza nel mercato idrico, ampliando le proprie capacità e portafoglio di servizi.Peter Duffy Ltd, fondata nel 1972 e con sede a Wakefield, nel Regno Unito, è nota per la sua esperienza e competenza nel settore idrico, offrendo una vasta gamma di servizi che vanno dalla progettazione e costruzione di impianti idrici alla manutenzione e riparazione delle reti idriche. L’acquisizione di questa azienda consolidata ha permesso a United Living di ampliare la propria offerta e di accrescere la propria presenza sul mercato, garantendo ai clienti un servizio completo e di alta qualità.Questa operazione si inserisce nella strategia di crescita e sviluppo di United Living, che punta a consolidare la propria posizione nel settore idrico e a offrire soluzioni sempre più innovative e sostenibili. Grazie a questa acquisizione, l’azienda è in grado di offrire ai propri clienti una gamma completa di servizi idrici, garantendo professionalità, efficienza e affidabilità.Per ulteriori dettagli sull’acquisizione di Peter Duffy Ltd da parte di United Living, si può consultare l’articolo completo pubblicato su The Construction Index al seguente link: https://www.theconstructionindex.co.uk/news/view/another-water-acquisition-for-united-living.
Processo Produttivo di una Microproduzione di Laterizi Autorigeneranti con Cenere Vulcanica
La Microimpresa Edile come Motore di Resilienza e Autosufficienza
In un mondo sempre più interconnesso e soggetto a sfide climatiche e sociali, le microimprese edili hanno un’opportunità unica di evolversi in sistemi produttivi autosufficienti, capaci di affrontare le sfide economiche e ambientali con maggiore resilienza. Il settore edile, tradizionalmente dipendente da materiali e risorse provenienti da filiere esterne, sta attraversando una fase di trasformazione grazie all’adozione di tecniche innovative e materiali sostenibili.
Adottando processi come la produzione di laterizi autorigeneranti a base di cenere vulcanica, una piccola azienda edile può diventare un punto di riferimento locale per la sostenibilità e la resilienza produttiva. Non si tratta solo di produrre materiali ecologici, ma di creare un sistema in grado di ridurre i costi attraverso l’uso di risorse locali e facilmente reperibili, riducendo così la dipendenza da fornitori esterni e migliorando la sostenibilità economica e ambientale dell’azienda.
Trasformazione in una microimpresa autosufficiente
Un’impresa edile che decide di integrarsi in questi processi non solo migliora la sua capacità produttiva, ma diventa anche parte integrante del tessuto sociale e ambientale del territorio in cui opera. Attraverso l’adozione di tecnologie come i laterizi autorigeneranti o la produzione di materiali da costruzione alternativi, l’impresa può:
Utilizzare risorse locali (come la cenere vulcanica) che abbassano i costi di approvvigionamento e riducono il trasporto, aumentando l’efficienza economica.
Ridurre l’impatto ambientale: la produzione di materiali con bassi costi energetici e ridotte emissioni di CO₂ favorisce la sostenibilità ambientale.
Aumentare la resilienza territoriale: diversificando la propria produzione e integrando processi sostenibili, l’impresa contribuisce alla solidità del territorio e alla difesa dalle sfide climatiche (es. inondazioni, terremoti, etc.).
Un modello per il futuro
Attraverso l’adozione di questi approcci, le piccole aziende edili non solo diventano autoresilienti, ma si pongono anche come modelli di riferimento per la comunità locale, dimostrando come l’innovazione tecnologica possa trasformare il settore edile, rendendolo più sostenibile, indipendente e integrato con l’ambiente circostante.
🌋 1. Cos’è la Cenere Vulcanica e Perché è Utile
La cenere vulcanica è un materiale naturale derivato dall’eruzione dei vulcani, composto principalmente da silice (SiO₂), allumina (Al₂O₃) e ossidi alcalini (Na₂O, K₂O). È un prodotto puzzolanico, che significa che può reagire chimicamente con la calce (Ca(OH)₂) in presenza di umidità per formare composti autorigeneranti, come i silicati di calcio idrati (C-S-H), che sigillano le microfessure nei laterizi.
Caratteristiche principali della cenere vulcanica:
Reattività chimica: quando mescolata con calce e acqua, forma silicati di calcio che creano un materiale resistente.
Proprietà autorigeneranti: la cenere reagisce con la calce nelle fessure, riparandole nel tempo.
Sostenibilità: è una risorsa naturale e abbondante, particolarmente utile in aree vulcaniche (es. Italia, Islanda, Grecia).
🔄 2. Meccanismo di Autorigenerazione della Cenere Vulcanica
Il processo autorigenerante della cenere vulcanica avviene attraverso la reazione chimica tra il diossido di silicio (SiO₂) nella cenere, la calce idrata (Ca(OH)₂) presente nel laterizio e l’umidità ambientale. La reazione produce silicati di calcio idrati (C-S-H) che sigillano le microfessure.
Questi composti non solo colmano le fessure, ma rinforzano anche la struttura del materiale, aumentando la sua durata nel tempo.
Caratteristiche del processo:
Autoguarigione passiva: la cenere è capace di “ripararsi” autonomamente quando la calce si trova in ambienti umidi e in presenza di crepe.
Velocità di guarigione: in condizioni di alta umidità, il processo di riparazione può essere visibile già dopo 7–21 giorni.
🧪 3. Preparazione del Laterizio con Cenere Vulcanica
Per produrre laterizi autorigeneranti utilizzando la cenere vulcanica, è necessario seguire un processo preciso che combina la cenere con argilla, calce e sabbia. Ecco i materiali e i metodi dettagliati:
Materiali necessari:
Cenere vulcanica fine (preferibilmente macinata fino a meno di 75 µm per aumentare la reattività).
Argilla (di buona qualità, proveniente da terreni locali).
Calce idrata (Ca(OH)₂) per attivare la reazione chimica.
Sabbia fine (per migliorare la struttura del laterizio).
Acqua (necessaria per dare plasticità all’impasto e per attivare la reazione).
Quantità per 100 kg di impasto:
Componente
Percentuale
Quantità per 100 kg di impasto
Argilla locale
60–70 %
60–70 kg
Cenere vulcanica fine
10–20 %
10–20 kg
Calce idrata (Ca(OH)₂)
5–10 %
5–10 kg
Sabbia fine
10–15 %
10–15 kg
Acqua
~18 %
18 L
Note:
La cenere deve essere setacciata finemente (<75 µm) per migliorarne la reattività.
La calce idrata deve essere aggiunta con attenzione per evitare un’eccessiva alcalinità che potrebbe interferire con la reazione chimica.
🛠 4. Metodo di Produzione
1. Preparazione dei Materiali
Setacciare la cenere vulcanica fino a ottenere una polvere fine (<75 µm).
Setacciare anche l’argilla per eliminare impurità, ottenendo una granulometria uniforme.
Preparare la calce idrata e la sabbia.
2. Miscelazione
Mescolare la cenere vulcanica con l’argilla e la sabbia fine.
Aggiungere la calce idrata e mescolare per ottenere una miscela uniforme.
Aggiungere acqua lentamente fino a raggiungere una consistenza plastica (circa il 18% di acqua in base al peso totale).
3. Formatura dei Laterizi
Estrudere o modellare l’impasto in forme di laterizio desiderate, come mattoni di dimensioni standard (10 cm × 5 cm × 2 cm).
I laterizi possono essere modellati a mano o mediante l’uso di una pressa o estrusore.
4. Essiccazione
Essiccare i mattoni in un ambiente controllato, per rimuovere l’umidità in eccesso prima della cottura.
Il processo di essiccazione dura 12-24 ore in un essiccatore a bassa temperatura (max 60°C) per evitare la deformazione.
5. Cottura
I laterizi devono essere cotti in un forno ad alta temperatura (800–1000°C). La temperatura e la durata della cottura sono fondamentali per ottenere la resistenza meccanica desiderata.
La temperatura iniziale dovrebbe essere di circa 60°C per l’essiccazione, per poi aumentare gradualmente fino a raggiungere la temperatura finale di 1000°C.
6. Test di Qualità
Una volta raffreddati, i laterizi devono essere sottoposti a test di resistenza a flessione, assorbimento d’acqua, e capacità autorigenerante.
Per testare la capacità autorigenerante, si creano piccole fessure nei mattoni e si espongono a umidità controllata. Si osserva la guarigione delle fessure nel corso del tempo (7–21 giorni).
🔬 5. Prestazioni e Risultati
Capacità autorigenerante:
La cenere vulcanica, in combinazione con la calce, può riparare microfessure di circa 0,3–0,5 mm in dimensione.
La riparazione avviene in modo graduale: l’umidità penetra nelle crepe, attivando la reazione chimica che produce silicati di calcio che riempiono e sigillano le fessure.
Resistenza meccanica:
La resistenza meccanica dei laterizi può essere leggermente inferiore rispetto ai laterizi tradizionali, a causa della presenza della cenere, ma può essere comunque adeguata per molte applicazioni edilizie.
È importante testare i laterizi in condizioni reali per verificarne la performance a lungo termine.
Sostenibilità:
Utilizzare la cenere vulcanica è una scelta altamente sostenibile: è un materiale locale e riciclabile che riduce l’impatto ambientale.
La produzione di laterizi con cenere vulcanica riduce l’uso di risorse naturali e emissioni di CO₂ rispetto ai laterizi tradizionali.
✅ 6. Conclusione
La cenere vulcanica è un materiale naturale straordinariamente adatto per la produzione di laterizi autorigeneranti. La sua capacità di reagire con la calce in presenza di umidità la rende una soluzione ideale per migliorare la durabilità dei mattoni, rendendoli in grado di riparare automaticamente microfessure nel tempo.
Vantaggi:
Sostenibilità: materiale naturale ed eco-friendly.
Efficacia: autorigenerazione chimica in tempi brevi.
Economicità: ridotto costo di produzione grazie all’uso di cenere vulcanica locale.
Prossimi passi:
Puoi iniziarti a sperimentare con piccole quantità di cenere vul
Chiedi a ChatGPT
Hai detto:
continua
ChatGPT ha detto:
canica per perfezionare il processo e testare le prestazioni. Una volta che hai ottenuto risultati positivi su piccola scala, potrai scalare la produzione a livello più ampio, implementando eventuali modifiche ai dosaggi o alle tecniche di miscelazione.
🔍 7. Considerazioni Finali
L’uso della cenere vulcanica come materiale autorigenerante per la produzione di laterizi non è solo una scelta ecologica, ma anche una soluzione pratica per migliorare la durabilità e la vita utile dei materiali da costruzione. La sua capacità di riparare le fessure attraverso un processo chimico lento e naturale rende i laterizi più resilienti nel tempo, riducendo i costi di manutenzione e aumentando la sostenibilità dell’edificio.
Punti chiave:
Riciclabilità: La cenere vulcanica è una risorsa naturale abbondante che può essere facilmente recuperata in molte regioni vulcaniche. Utilizzarla per la produzione di laterizi contribuisce a ridurre i rifiuti.
Semplicità di produzione: Il processo di miscelazione della cenere con calce, sabbia e argilla è abbastanza semplice e non richiede attrezzature particolarmente sofisticate. Può essere applicato anche in piccole aziende di produzione locale.
Durabilità e riparazione: L’autorigenerazione chimica consente una riparazione efficace di microfessure nel tempo, aumentando la durabilità e riducendo i danni dovuti a piccole fratture.
Sfide:
Resistenza meccanica: I laterizi prodotti con cenere vulcanica potrebbero mostrare una leggera diminuzione della resistenza meccanica rispetto ai laterizi tradizionali. Tuttavia, questo può essere mitigato con test di miscelazione e l’ottimizzazione dei dosaggi.
Tempo di riparazione: La riparazione delle fessure avviene lentamente nel tempo, quindi in caso di danni gravi, il processo potrebbe non essere immediato.
Fornitura e logistica: Se non si è situati in un’area vulcanica, il trasporto della cenere vulcanica può comportare dei costi aggiuntivi, sebbene le risorse siano abbondanti in molte zone vulcaniche.
💡 8. Raccomandazioni per l’Implementazione su Larga Scala
1. Test di prestazioni sul campo
È fondamentale eseguire dei test di qualità su larga scala per verificare la resistenza meccanica dei laterizi e la loro efficacia autorigenerante nel lungo periodo. Test di durabilità in ambienti ad alta umidità, resistenza al gelo e all’acqua sono cruciali per valutare la sostenibilità.
2. Scalabilità della produzione
Quando si amplia la produzione, bisogna considerare la fornitura di cenere vulcanica. Se si trova in una zona vulcanica, questo diventa molto semplice e vantaggioso, ma in altre aree potrebbe essere necessario collaborare con aziende locali di recupero della cenere.
3. Collaborazioni e certificazioni
Collaborare con università, istituti di ricerca e laboratori di materiali potrebbe essere un passo importante per ottenere certificazioni di qualità. La certificazione di materiali autorigeneranti potrebbe aprire opportunità sul mercato ed essere un punto di vendita significativo per il tuo prodotto.
4. Educazione del mercato
Promuovere la consapevolezza sull’importanza dei materiali autorigeneranti nel settore edile può essere un modo efficace per attrarre clienti ecologicamente consapevoli e costruire una reputazione nel settore edilizio sostenibile.
Mescolare cenere, argilla, sabbia e calce. Aggiungere acqua lentamente fino a ottenere una consistenza plastica.
3. Formatura
Modellare i laterizi (mattoni) con una pressa o a mano.
4. Essiccazione
Essiccare a bassa temperatura (max 60°C) per 12-24 ore.
5. Cottura
Cottura a 800-1000°C in forno.
6. Test di qualità
Verificare resistenza meccanica, capacità autorigenerante e resistenza all’umidità.
7. Applicazioni
Utilizzare i laterizi in edifici, infrastrutture, etc., per testare la loro durabilità nel tempo.
✅ 10. Conclusione Finale
L’uso della cenere vulcanica nella produzione di laterizi autorigeneranti rappresenta un approccio ecologico e innovativo per il settore edilizio. Oltre a migliorare la durabilità dei materiali, la cenere vulcanica offre una soluzione sostenibile che sfrutta una risorsa naturale abbondante e facilmente accessibile in molte zone vulcaniche. Il processo di autorigenerazione passiva attraverso la reazione chimica con la calce e l’umidità permette di ottenere mattoni che si riparano autonomamente, riducendo i costi di manutenzione e aumentando la durata dei materiali.
Prossimi passi:
Ottimizzazione dei dosaggi: Testare e adattare la quantità di cenere, calce e argilla per ottimizzare il risultato finale.
Espansione della produzione: Aumentare la capacità produttiva e considerare l’uso di tecnologie moderne per migliorare l’efficienza.
Verifica delle performance: Continuare a monitorare e testare la performance dei laterizi per garantirne l’affidabilità in condizioni di utilizzo reali.
Per avviare una microproduzione di laterizi autorigeneranti a base di cenere vulcanica, è essenziale seguire un processo produttivo ben definito, che ottimizza l’uso delle risorse e garantisce un prodotto di qualità. Ecco come strutturare il processo passo-passo, considerando che l’obiettivo è ottenere una produzione su piccola scala, magari per un laboratorio artigianale o una piccola azienda.
🔄 Processo Produttivo di una Microproduzione di Laterizi Autorigeneranti con Cenere Vulcanica
1. Ricerca e Preparazione dei Materiali
La fase iniziale consiste nella selezione e preparazione dei materiali.
A. Cenere Vulcanica
Provenienza: Se possibile, procurarsi cenere vulcanica locale o provinciale (ad esempio, dalle zone vulcaniche del Vesuvio, Etna, o Campi Flegrei). La cenere deve essere macinata finemente (< 75 µm) per aumentarne la reattività con la calce.
Stoccaggio: Una volta macinata, la cenere viene conservata in sacchi sigillati per evitare l’umidità e garantire la sua freschezza.
B. Argilla
L’argilla deve essere di buona qualità, ricca di silice e allumina, e priva di impurità.
Pretrattamento: Se l’argilla contiene particelle più grosse, è necessario setacciarla per ottenere una granulometria fine.
C. Calce Idraulica (Ca(OH)₂)
La calce idrata è l’ingrediente chiave per attivare la reazione chimica con la cenere vulcanica. Può essere acquistata in negozi di materiali edili.
Stoccaggio: Deve essere conservata in ambienti asciutti per evitare che reagisca con l’umidità.
D. Sabbia Fine
Utilizzare sabbia fine (granulometria fino a 2 mm) per garantire una buona struttura e stabilità ai laterizi.
La sabbia deve essere pulita da qualsiasi impurità (es. sabbia di mare, sali).
E. Acqua
L’acqua utilizzata per miscelare deve essere pulita e priva di sostanze chimiche che potrebbero interferire con la reazione chimica.
2. Preparazione dell’Impasto
Una volta raccolti e preparati i materiali, si passa alla fase di miscelazione. Questa fase è cruciale per garantire che il laterizio autorigenerante abbia le giuste proprietà chimiche e fisiche.
A. Dosaggio dei Materiali
Componente
Quantità per 100 kg di impasto (in %)
Argilla locale
60–70%
Cenere vulcanica fine
10–20%
Calce idrata (Ca(OH)₂)
5–10%
Sabbia fine
10–15%
Acqua
Circa 18% (in base alla consistenza desiderata)
B. Processo di Miscelazione
Miscelare seccamente: Iniziare mescolando la cenere, l’argilla e la sabbia. Utilizzare un mixer a paletta o una betoniera per assicurare una distribuzione uniforme dei componenti secchi.
Aggiungere la calce: Integrare la calce idrata nella miscela e mescolare ancora.
Aggiungere acqua: Gradualmente, aggiungere l’acqua alla miscela fino a ottenere una consistenza plasticosa (simile a quella dell’argilla umida).
Controllo della consistenza: È fondamentale mantenere una consistenza plastica, ma non troppo fluida, in modo che l’impasto non perda la sua forma durante la formatura.
3. Formatura dei Laterizi
Una volta preparato l’impasto, si passa alla formatura dei laterizi, che può essere eseguita manualmente o con l’aiuto di una pressa o estrusore.
A. Formatura Manuale
Se la produzione è di piccola scala, si possono formare i laterizi manualmente:
Prendere una porzione di impasto e modellarla nella forma desiderata (tipicamente mattoni rettangolari 10 cm × 5 cm × 2 cm).
Compattare bene l’impasto per evitare bolle d’aria e garantire una struttura solida.
B. Formatura con Pressa o Estrusore
Se si dispone di una pressa manuale o meccanica, il processo diventa più veloce e preciso:
Caricare l’impasto nella macchina.
Formare i laterizi mediante compressione. La pressa garantirà una forma più uniforme e una densità maggiore nei mattoni.
4. Essiccazione dei Laterizi
Dopo aver formato i laterizi, questi devono essere essiccati per ridurre l’umidità prima della cottura.
A. Essiccazione all’aria
I mattoni vanno disposti su un piano asciutto (magari in una stanza ben ventilata) per permettere una stagionatura naturale.
Tempo di essiccazione: circa 12-24 ore a temperatura ambiente, a seconda dell’umidità ambientale.
B. Essiccazione forzata
Per accelerare il processo di essiccazione, è possibile utilizzare un essiccatore o una stufa a bassa temperatura (massimo 60°C).
È importante non essiccare troppo velocemente, poiché l’impasto potrebbe creparsi se l’umidità evapora troppo in fretta.
5. Cottura dei Laterizi
Una volta essiccati, i laterizi vengono cotti a temperature elevate per ottenere una buona resistenza meccanica e una buona conservazione della capacità autorigenerante.
A. Cottura in Forno
Temperatura: I mattoni devono essere cotti in un forno (a legna o elettrico) a una temperatura di 800–1000°C.
Tempo di cottura: La cottura dura circa 12-24 ore a seconda delle dimensioni dei laterizi e della temperatura del forno.
Fasi della cottura:
Riscaldamento graduale fino a 600°C per eliminare l’umidità residua.
Raggiungimento della temperatura finale di circa 1000°C per completare la sinterizzazione.
B. Raffreddamento
Dopo la cottura, i laterizi devono essere lasciati raffreddare lentamente per evitare rotture dovute a shock termici.
Il processo di raffreddamento può durare dalle 12 alle 24 ore, a seconda delle dimensioni dei mattoni.
6. Test di Qualità e Validazione
Una volta prodotti i laterizi, è fondamentale testare il prodotto finito per verificarne le proprietà autorigeneranti e le prestazioni.
A. Test Meccanici
Resistenza a compressione: Verificare la resistenza dei laterizi con test standard di pressione per assicurarsi che siano sufficientemente solidi.
Resistenza alla flessione: Testare la flessibilità e la capacità di carico.
B. Test di Autorigenerazione
Creare microfessure nei laterizi con strumenti specifici (ad esempio, martello).
Esporre i laterizi a condizioni di umidità controllata (simulando l’esposizione a pioggia o umidità elevata).
Osservare la guarigione delle fessure nel tempo. La riparazione dovrebbe avvenire in un arco di tempo di 7-21 giorni.
7. Imballaggio e Distribuzione
Una volta che i laterizi hanno superato i test di qualità, possono essere imballati e pronti per la distribuzione o l’uso in cantieri edili. Se la produzione è destinata a un mercato più ampio, sarà necessario organizzare la logistica per la consegna dei prodotti finiti.
Conclusioni
La microproduzione di laterizi autorigeneranti con cenere vulcanica è un processo che può essere avviato anche su piccola scala, utilizzando attrezzature relativamente semplici. Il successo dipende dalla qualità dei materiali, dal controllo accurato dei processi di miscelazione, formatura,
Hai detto:
Il Gruppo Wates rafforza il team HR: nomina del nuovo responsabile delle risorse umane per ottimizzare la gestione del personale
Il Gruppo Wates, un’azienda leader nel settore delle costruzioni e dei servizi, ha recentemente annunciato la nomina di un nuovo responsabile delle risorse umane per supervisionare le sue operazioni legate al personale e alle risorse umane. Questa decisione strategica è stata presa al fine di potenziare e ottimizzare la gestione delle risorse umane all’interno dell’azienda, garantendo un ambiente di lavoro positivo e produttivo per tutti i dipendenti.Il nuovo responsabile delle risorse umane, con una vasta esperienza nel settore e una comprovata capacità di leadership, sarà responsabile di sviluppare e implementare politiche e programmi HR efficaci, al fine di attrarre, sviluppare e trattenere il talento all’interno dell’organizzazione. Inoltre, si occuperà di garantire il rispetto delle normative in materia di lavoro e di promuovere una cultura aziendale inclusiva e orientata al successo.Questa nomina riflette l’impegno del Gruppo Wates nel valorizzare il proprio capitale umano e nel garantire il benessere e lo sviluppo professionale dei propri dipendenti. Per ulteriori dettagli sull’annuncio e sul nuovo responsabile delle risorse umane di Wates, si può consultare l’articolo completo su The Construction Index.
“La crescita del mercato delle batterie al litio: sfide e opportunità per un futuro sostenibile”
Il mercato delle batterie al litio sta crescendo rapidamente grazie alla crescente domanda di veicoli elettrici e dispositivi elettronici. Secondo il report di Interzero, entro 8 anni ci saranno circa 9,2 milioni di batterie al litio da smaltire in Europa, con un costo stimato di circa 11,5 miliardi di euro.Le batterie al litio sono utilizzate in una vasta gamma di dispositivi, tra cui smartphone, laptop, veicoli elettrici e sistemi di stoccaggio energetico. Tuttavia, una corretta gestione del ciclo di vita delle batterie al litio è essenziale per evitare impatti negativi sull’ambiente e sulla salute umana.Attualmente, il riciclo delle batterie al litio è ancora in fase di sviluppo e sono necessari investimenti significativi per sviluppare tecnologie efficienti e sostenibili per il recupero dei materiali preziosi contenuti nelle batterie.Inoltre, è importante promuovere la raccolta differenziata delle batterie esauste e sensibilizzare i consumatori sull’importanza del corretto smaltimento. Solo attraverso un approccio integrato e collaborativo sarà possibile affrontare la sfida del crescente numero di batterie al litio da smaltire in modo sostenibile e responsabile.